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1. Introduction

One of the most important uses of mathematical
optimization in contemporary finance is still portfolio
management. The overall objective is to identify asset
allocation policies that balance between the expected
return and the risk associated with them. Ever since
Markowitz proposed the mean-variance maximization
model, mathematical models have been central to
portfolio theory. The discipline has developed over time
to be based on both linear and quadratic programming,
as well as stochastic, robust, and distributionally robust
optimization methods to enhance resilience in the
presence of uncertainty (Senescall and Low, 2024;
Platanakis et al., 2021).

The early models, though they form the basis of the
various models, had strong assumptions like normally
distributed returns, known covariances, and investor
rationality. CAPM and its extensions assisted in the risk-
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adjusted valuation, yet they relied on unrealistic
assumptions (Blanchet et al., 2022; Lotfi and Zenios,
2018). Contrarily, new methods are aimed at solving real-
world anomalies like tail risk, asymmetric distribution,
and incomplete information. All these problems require
optimization schemes that are not just computational
acceptable, but are also theoretically acceptable in the face
of ambiguity.

To handle uncertain probability distributions, stochastic
dominance and empirical likelihood frameworks have
been developed to deal with decision-making (Post et al.,
2018). Liesio et al. (2020) also build on this argument by
suggesting portfolio diversification methods when the
probability information is incomplete, since market
dynamics are not necessarily entirely quantifiable or
predictable. Equally, the use of robust optimization has
gained popularity due to its capacity to provide stable
results in the worst-case scenario. Bertsimas et al. (2018)
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developed robust data-driven models based on the
learning of past data combined with worst-case reasoning
to construct portfolios that can be sustained under model
ambiguity.

Nevertheless, as the attractiveness of robust and stochastic
optimization is on the rise, most of the formulations are
not easily analyzed mathematically. Indicatively, Caccioli
et al. (2018) emphasized that optimization of portfolios in
the context of expected shortfall is quite challenging, and
the error in estimation may result in the creation of a
highly unstable model. Georgantas et al. (2024) also
compared the robust optimization techniques and found
discrepancies in performance and traceability between
the techniques. An integrated framework is yet to be
achieved, particularly when incorporating robust and
stochastic models in one consistent mathematical view.
Diversification logic is also another issue. Hwang et al.
(2018) compared naive and optimized diversification
strategies, highlighting the concealed tail risks of naive
allocation strategies. In the meantime, Kim et al. (2018)
showed the superiority of well-designed equity portfolio
designs over classical methods through the consideration
of both estimation risk and returns variance. The
developments demonstrate an increasing realization of
the nonlinear risk structures that its traditional
approaches might not be able to quantify.

Regardless of these improvements, a lot of the models
suggested over the past few years continue to be poorly
developed. Because robust portfolio optimization does
not have a consistent taxonomy in mathematics, as it was
observed in the categorized review by Xidonas et al.
(2020), there is no easy way to compare the methods
applied to solve a problem of one type with another. Also,
existing research typically optimizes within a given
paradigm, either stochastic, robust, or heuristic, but does
not provide a synthesis or cross-paradigm comparison of
the models. This constrains generalizability as well as
theoretical insight.

Given these concerns, a coherent mathematical approach
to optimization methods in portfolio management that
combines different models, evaluates their theoretical
assumptions, and provides a standardized framework in
which the quality and feasibility of solutions can be
measured is urgently required. This kind of treatment
would not only make the portfolio theory more scientific
but would also inform the creation of more resilient
financial strategies.

Objectives

1. To present a mathematically integrated and
comparative framework of optimization techniques
used in financial portfolio management, including
convex, stochastic, and robust models.

2. To explore the theoretical underpinnings of these
models by deriving existence, uniqueness, and
stability conditions for optimal portfolio solutions.

2. Mathematical Formulation of Portfolio Optimization
2.1 Model Assumptions
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Let there be a finite set of n financial assets, indexed by

i=1,2,..,n. Each asset has an associated random

return. 73, and the investor selects portfolio weights w;,

representing the proportion of total capital invested in

the asset i. The primary objective of portfolio
optimization is to determine the optimal weight vector.

w = (W, Wy, ...,w,,) that maximizes expected return

while minimizing risk.

The following standard assumptions are considered:

e Non-negativity constraint: w; = 0 for all i, assuming
no shortselling.

e Budget constraint: },/—; w; = 1, ensuring full capital
allocation.

e Return model: Returns 7; are modeled as either
random variables (stochastic models) or values within
uncertainty sets (robust models).

e Risk measures: May include variance, value-atrisk
(VaR), conditional value-atrisk (CVaR), or sparsity
penalties for parsimony.

As Zhao et al. (2023) note, modern portfolio design

increasingly incorporates constraints that promote

sparsity and account for estimation errors under
uncertainty. These considerations shape the formal
optimization problem's structure and solution approach.

2.2 General Optimization Problem
A general portfolio optimization problem is defined as
follows:

m“iInF (w) = ¢(Risk(w), Return(w))

Subject to:

o Yiwi=1

o w;2>20,Vi
The function ¢(-)represents a decision-maker's
preference over the trade-off between risk and return. In
a multi-objective context, this may be treated as a
scalarization of competing objectives. As noted by Takano
and Gotoh (2023), a unified framework for treating these
formulations mathematically allows analysts to interpret
classic and modern approaches within a common
optimization landscape.

2.3 Specific Optimization Frameworks
Convex Optimization
In cases where the objective as well as the feasible region
is convex, the portfolio optimization problem guarantees
global optimality. Convex formulations allow easily
analyzed analysis, especially when risk is modeled as a
quadratic or piecewise-linear. Bertsimas and Cory-Wright
(2022) stress the importance of convex and sparse
formulations to obtain the scalable models of portfolios
that can be computed even when the asset universe is very
large.
Quadratic Programming
The classical Markowitz model is typically expressed as a
quadratic programming (QP) problem:

m“iln wizw — AwTu
where X is the covariance matrix of asset returns, @ is the
vector of expected returns, and A is the risk aversion
parameter. The structure of this formulation ensures
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convexity, but sensitivity to parameter estimation limits
practical robustness.

Stochastic Optimization

Stochastic models are returns that are considered random
variables with known or partially known distributions.
The goal usually tends to reduce the anticipated loss or
maximize the anticipated utility subject to probabilistic
restrictions. In their study, La Torre et al. (2024) suggest
a stochastic optimization method in which the
incomplete information and partial uncertainty are
integrated into the modeling framework that covers the
gaps that remain open by deterministic models.

Robust Optimization

Robust models are concerned with worst-case scenarios by
defining uncertainty sets of return vectors or risk
parameters. The optimization is turned into a minimax
problem, which can be reformulated with the help of
duality methods. The study by Zhao et al. (2023)
demonstrates that adding both sparsity and robustness
results in both interpretable and model misspecification
resilient portfolio solutions.

Multi-objective Optimization

This framework fills in the trade-offs by maximizing a
number of goals at the same time, namely maximizing the
returns and minimizing the variance and transaction
costs. Takano and Gotoh (2023) emphasize that convexity
allows building Pareto-efficient frontiers, which provides

Journal of Theoretical Accounting Research

the decision-maker with a list of non-dominated solutions
to make a selection..

2.4 Analytical Comparison

Both of the formulations have their own mathematical

strengths and weaknesses:

e Convex and QP models: The global optima and
quick convergence are ensured; however, the
estimation of parameters needs to be precise.

e Stochastic models: Stochastic models admit the
treatment of uncertainty probabilistically, but they
can be computationally heavy when the distribution
is complex (La Torre et al., 2024).

e Robust optimization: Performance guarantees are
used in cases of worst-case scenarios but can be either
conservative or large (Jiang et al., 2023).

e Multi-objective models: These are more detailed
decision frames, but make the interpretation of
solutions and selection criteria more difficult.

In Table 1, a comparative summary of five significant
optimization frameworks applied in portfolio theory is
presented. It describes the type of objective, the structure
of constraints, and the overall solvability of each of the
models, and points out the mathematical variety in
current methods of building a modern portfolio.

Table 1. Comparative Summary of Mathematical Optimization Frameworks in Portfolio Management

Framework Objective Type Constraints Solvability
Convex Optimization Convex Linear/Convex Global optimum
Quadratic Programming | Quadratic Linear equality/inequality | Polynomial time
Stochastic Optimization | Expectation-based | Probabilistic Scenario-based
Robust Optimization Minimax Uncertainty set-based Dual reformulable
Multi-objective Vector-valued Convex/Linear Pareto solutions

Jiang et al. (2023) further demonstrate that robust models
incorporating temporal constraints, such as bankruptcy
avoidance, require custom constraint design but are
amenable to tractable solution methods under specific
assumptions.

3. Theoretical Analysis and Propositions

3.1 Theoretical Results

To establish the mathematical foundations of the
proposed portfolio optimization frameworks, key
theoretical properties in terms of existence, uniqueness,
duality, and sensitivity were analyzed.

Existence of Optimal Solution

Let W € R"™ Be the feasible set of portfolio weights,
defined as:

n
w = WER”|Z w; =1,w; =04
i=1

Assuming that the objective function F (W) is continuous
and W Is convex and compact, and Weierstrass' Theorem
guarantees the existence of an optimal solution.
Uniqueness Under Convexity
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If F(w) is strictly convex, then the optimal solution w* €
W is unique. This is especially applicable in the quadratic
mean-variance framework, where the risk function
involves a positive definite covariance matrix. X, ensuring
strict convexity of the objective.

Duality and KKT Conditions

For convex problems with differentiable objectives and
convex constraints, the Karush-Kuhn-Tucker (KKT)
conditions characterize optimality. Let £L(w, 4, ) be the
Lagrangian for the constrained optimization problem.
The optimal solution satisfies:

e Stationarity: VF(W*) + A1 —u =0

e DPrimal feasibility: }; w; =1, w; =0

e Dual feasibility: y; = 0

e Complementary slackness: g;w; = 0

These conditions form the basis for dual reformulations
and efficient numerical solvers.

Sensitivity Analysis

Let Ay and AXY denote small perturbations in expected
returns and covariances, respectively. The change in
optimal weights AW™ can be bounded using first-order
Taylor approximations:

Aw* ~ —H IVF'(w")A8,
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where H is the Hessian matrix and A6 represents
parameter variation. This analysis is crucial for
understanding how robust or fragile a portfolio solution
is under model uncertainty.

3.2 Proofs and Mathematical Derivations

Here, a sketch of the uniqueness result for convex
optimization was illustrated.

Proposition.

Let F (W) be strictly convex and W convex and compact.
Then the solution w* € W that minimizes F(W) is

unique.
lor

o o o
B [«)] o]

o
[N]
:

Objective Function Value F(w)

0.0f
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Proof Sketch.
Assume two distinct minima. W; # W, € W. Since F is
strictly convex:

Flaw; + (1 — a)w,) < aF(wy) + (1 — a)F(w,)
for a € (0,1), contradicting minimality. Thus, the
solution must be unique.

Figure 1 below graphically demonstrates this with a
strictly convex risk function over the feasible region,
showing how the minimum is achieved uniquely.

0.0 0.2 0.4

0.6 0.8 1.0

Weight wa

—— Convex Objective

x Unique Minimum

Figure 1. Visualization of Convex Objective with Unique Optimal Solution

The figure illustrates a strictly convex function over a
simplex of feasible weights, showing a clear, unique
minimum.

3.3 Comparative Insights

The various optimization structures represent various

assumptions regarding risk, uncertainty and investor

behavior. For instance:

¢ Convex and quadratic models make the assumption
that the distributions of returns are fully known and
prefer analytical simplicity.

e Stochastic models involve all randomness explicitly
and enable the possibility of making decisions based
on expectation making, but can be computationally
intensive.

e Strong optimization methods do not depend on the
accurate estimation of the probability but the worst-

case performance, which is appropriate in the high
volatility markets.

e Multi-objective optimization is based on the reality of
trade-offs between competing objectives such as
maximum return and minimum risk or turnover.

The methods also differ in the modeling of the

preferences of investors, especially the risk aversion. The

aversion is coded in convex utility-based models with a

scalar risk-return trade-off parameter, and robust methods

are effective in encoding aversion to uncertainty using a

set of uncertainty.

The summary of the results of the study of the main

mathematical behaviors and sensitivities of the various

frameworks to different input perturbations is
summarized in Table 2 below.

Table 2. Theoretical Properties of Portfolio Optimization Frameworks under Uncertainty

Optimization Model Handles Uncertainty | Risk Aversion Mechanism | Solution Stability
Convex Optimization No Scalar trade-off High (if convex)
Quadratic Programming | Limited (estimates) Fixed covariance structure Medium
Stochastic Optimization | Probabilistic Expected utility Scenario-sensitive
Robust Optimization Worst-case sets Set construction parameters | High
Multi-objective Trade-offs modeled Pareto frontier preference Moderate
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Table 2 helps clarify the mathematical flexibility and
limitations of each method when applied to real-world
financial data under uncertainty.

4. Mllustrative Example

In order to illustrate the mathematical nature of the
methods of portfolio optimization in a simplified
scenario, a synthetic example with three assets was made.
This situation enables us to analytically observe how the
risk aversion changes will influence the optimal portfolio
weights in a mean-variance framework

4.1 Dataset Description

Assume the following synthetic parameters:

Expected returns: Asset 1 = 8%, Asset 2 = 10%, Asset

Journal of Theoretical Accounting Research

e (Covariance matrix:

0.005 —0.010 0.004
X=]-0.010 0.040 —0.002
0.004 —0.002 0.023

¢ Risk aversion parameter A € {1,5,10}
The objective is to compute the optimal weights. w that
minimize the risk-return trade-off:

m“i/n wiZw—21-w'y
subject to ), w; = 1and w; = 0.
4.2 Optimization and Results
The optimization is solved symbolically by computing the
inverse of the covariance matrix and adjusting weights
based on the chosen. Avalue. The resulting weights for
each asset are summarized in Table 3 below.

3=12%
Table 3. Optimal Portfolio Weights Under Varying Risk Aversion Parameters
A (Risk Aversion) | Asset 1 | Asset 2 | Asset 3
1 0.2538 | 0.3766 | 0.3696
5 0.2755 | 0.3871 | 0.3374
10 0.2853 | 0.3921 | 0.3226

As shown, Asset 3 (with the highest expected return)
receives greater weight under low risk aversion, while
more conservative allocations (higher 1) favor less volatile
assets.

4.3 Risk-Aversion Sensitivity
The visualization of the change in portfolio weights with
the risk aversion parameter A is presented in Figure 2

0.8f

0.6

0.4F

Portfolio Weight

0.0F

below. One of them becomes obvious: the greater the A
value, the more diverse and risk-averse the allocation.
This substantiates the theoretical hypothesis according to
which an increased risk sensitivity leads to more
equilibrium portfolios, even in a simplified three-asset
setting.

4

6 10

Risk Aversion Parameter (A)

Asset 1

Asset 2

—o— Asset 3

Figure 2. Effect of Risk Aversion (A) on Portfolio Weights

5. Discussion

The above theoretical discussion has revealed that
mathematical models of portfolio optimization provide a
potent framework of the capture and response to
financial risk. The key to this strength lies in how various
formulations such as the convex formulation, the
stochastic formulation, the robust formulation and the
multi-objective formulation, have been able to capture
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subtle investor behavior and market uncertainty in a
structured, solvable form. The models allow more
rational and justifiable financial decisions to be made by
actively including constraints, risk aversion, and
uncertainty sets.

One of the key lessons of the study is the role of
mathematical generalizations to create a channel towards
enhancing both robustness and realism of portfolio
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construction. As an example, strong models enable
investors to hedge worst-case scenarios and model
uncertainty by including distributional or parametric
uncertainty in the formulation of the optimization. This
elasticity applies especially in international markets where
political and macroeconomic instability plays a major role
in determining the returns of the assets. Based on the
findings of Lotfi et al. (2025), hedging political risk in
strong portfolio frameworks makes it possible to deploy
plausible allocation plans even against a backdrop of
systemic instability.

Under extreme market conditions, common measures of
risk like variance may not be an accurate measure of
downside exposure. This problem has led to the creation
of more sophisticated loss functions and distributional
models which are more tail risk-sensitive. Le Courtois and
Xu (2024) also share this opinion and suggest a Pareto-
Dirichlet modeling methodology that allows highlighting
the sensitivity of extreme events in the process of
developing effective portfolios. Similarly, Sehgal et al.
(2023) assess risk in terms of the Omega-VaR ratio, which
expands theoretical understanding of the optimization of
portfolios in situations that are highly negative, yet
reasonable.

Multi-objective models also become a powerful tool to
model conflicting objectives of the investors, e.g.
maximizing the return and a minimum of drawdown,
turnover or other secondary measures. These models do
not consider a single optimal solution, but a Pareto
frontier of equally efficient solutions. Zhou-Kangas and
Miettinen (2019) explain that it is possible to maintain
the quality of decisions in a state of uncertainty by
maneuvering this frontier. Moreover, Petchrompo et al.
(2022) mention the issue of pruning to decrease the
complexity of the solution in high-dimensional multi-
objective  portfolios,  thereby = enhancing more
interpretable and computationally viable decision-
making.

The results of our exemplary case confirm the sensitivity
of the mathematical model of optimization in response to
the variations in investors' preferences, especially the risk
aversion coefficient A. This was counterintuitive to the
intuitive behavior of conservative investors in the real
world in that as the risk aversion increased, the
concentration of the portfolio decreased, as shown in the
visualization. This is consistent with Taylor (2022)
dynamic modeling of risk-adjusted returns based on
expected shortfall, where minor changes in investor
parameters produce significant changes in asset
weightings.

Structurally, strong models can also be dynamically
adjusted according to the changes or economic signs. This
development is captured by the concept of adjustable
robustness, which, as surveyed by Yanikoglu et al. (2019),
can be described as models that previously dealt with
uncertainty as fixed, but now can flex to disclosed
information or a change in the scenario. This will form a
gap between theoretical optimization and adaptive
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portfolio strategies, which may allow real-time adjustment
of assets using mathematically reasonable concepts.
Theoretical progress should keep on filling the gaps of the
underlying assumptions of linearity and stationarity in
portfolio models. As Waga et al. (2025) demonstrate, a
robust optimization model can be used to incorporate
more realistic and empirically appropriate asset pricing
mechanisms into the Arbitrage Pricing Theory. This is the
direction that is clearly fruitful in intersections between
financial theory and operational mathematics, with
prospects to enhance the empirical realism and
algorithmic flexibility of portfolio solutions.

6. Conclusion

This research paper offered a coherent mathematical view
of the methods of optimization in financial portfolio
management with a focus on the theoretical basis and
analytical ~characteristics of different frameworks.
Through a systematic analysis of the convex, stochastic,
robust and multi-objective models, the manner in which
each of the models represents different aspects of investor
behaviour and market uncertainty under a rigorous
optimization framework was brought to light. One of the
greatest contributions of the work is the comparative
analysis of the solvability of the models, sensitivity, and
robustness under different assumptions. Convex models
were demonstrated to be used to ensure unique solutions,
provide analytical clarity, and be computationally
efficient. Stochastic models enabled probabilistic risk
related to uncertainty in returns, and strong models
offered protection against model misspecification and
estimation error. Multi-objective optimization extended
the theoretical frontier of identifying trade-offs, providing
Pareto-efficient results that are useful in complex
investment objectives. These models were supported
mathematically by the proofs of existence and uniqueness
under  convexity  and firstorder  sensitivity
approximations, as well as by theoretical results. We also,
using an illustrative example, have shown how the
variation in the risk aversion parameter can change
optimal asset weights by a significant amount to give a
clear connection between mathematical behavior and
financial meaning. This article can be added to the body
of theoretical literature due to the ability to not only
provide a synthesis of various optimization strategies but
also to provide a systematized platform for assessing their
assumptions and limitations. In contrast to empirical
research based largely on historical data, we are concerned
about the generalizability and analysis rigor of the models
themselves. In the future, much can be done to combine
these optimization tools with Al-based systems that can
learn and evolve on the fly. It would be interesting to add
to the discussed frameworks with dynamic models that
continuously change portfolios as incoming information
is received, and empirical backtesting in various market
regimes. The following directions can be used to fill in the
disparity between the theoretical soundness and practical
implementation of the portfolio.
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