
Journal of Theoretical Accounting Research  
ISSN: 1556-5106 
Volume 22 Issue 1 Year 2026 Page 214-220 
 

 

Available online at: https://jtar.org    214 

Optimization Techniques In Financial Portfolio Management: A Mathematical 
Perspective 
 
 Dr. Deepa Damodaran1*, Dr. Vivek Sharma2, Dr Virendra Vasant Tatake3, Dr. Rahul Pal4,Dr 
Sunil Kumar Srivastava5

 
 

1*Associate Professor, Pillai Institute of Management Studies and Research, Pillai University, Email Id: 
deepadamodaran@mes.ac.in, Scopus Id: 57205192141, Orcid Id: 0000-0002-9557-6189 
2Associate Professor, Department of lifelong learning, University of Jammu, Jammu and Kashmir, Email Id: 
sharmavivek19@gmail.com, Orcid Id: 0000-0002-3293-5519 
3Director, Indira Global School of Business, Pune, Maharashtra, Email Id: Director@indiragbs.edu.in, Orcid Id: 0009-
0006-1184-9175 
4Assistant Professor, School of Business Management, Specialisation in Finance, Chhatrapati Shahu Ji Maharaj University, 
Kanpur, Email Id: rahulpal@csjmu.ac.in, Orcid Id: 0000-0003-0854-1189 
5Associate professor Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar 
Pradesh, Email Id: Shyam.sunil32@gmail.com, Orcid Id: https://orcid.org/0000-0003-2473-399X  
 
Abstract 
Traditional portfolio optimization models, such as the mean–variance framework, often fall short in addressing uncertainty, 
parameter estimation errors, and nonlinear investor objectives. This study provides a unified mathematical framework 
incorporating convex, stochastic, robust, and multi-objective optimization methods to model financial portfolios with greater 
theoretical rigor. The paper derives analytical conditions for the existence, uniqueness, and sensitivity of optimal solutions 
across formulations. A simplified symbolic example with three assets demonstrates the practical implications: increasing the 
risk aversion coefficient from 1 to 10 resulted in a 40% reduction in portfolio volatility, accompanied by a 15% decrease in 
expected return. This shift reflects a predictable yet mathematically tractable trade-off between risk minimization and return 
sacrifice, as governed by parameter tuning within each optimization model. The study underscores the value of mathematical 
generalization for improving the realism and robustness of portfolio models without relying on empirical backtesting. The 
comparison of model behaviors provides deep insight into the structural flexibility needed for informed financial decision-
making under uncertainty. Theoretical contributions include formal derivations, comparative complexity analysis, and 
guidance for future integration with intelligent adaptive systems and algorithmic frameworks. 
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1. Introduction 
One of the most important uses of mathematical 
optimization in contemporary finance is still portfolio 
management. The overall objective is to identify asset 
allocation policies that balance between the expected 
return and the risk associated with them. Ever since 
Markowitz proposed the mean-variance maximization 
model, mathematical models have been central to 
portfolio theory. The discipline has developed over time 
to be based on both linear and quadratic programming, 
as well as stochastic, robust, and distributionally robust 
optimization methods to enhance resilience in the 
presence of uncertainty (Senescall and Low, 2024; 
Platanakis et al., 2021). 
The early models, though they form the basis of the 
various models, had strong assumptions like normally 
distributed returns, known covariances, and investor 
rationality. CAPM and its extensions assisted in the risk-

adjusted valuation, yet they relied on unrealistic 
assumptions (Blanchet et al., 2022; Lotfi and Zenios, 
2018). Contrarily, new methods are aimed at solving real-
world anomalies like tail risk, asymmetric distribution, 
and incomplete information. All these problems require 
optimization schemes that are not just computational 
acceptable, but are also theoretically acceptable in the face 
of ambiguity. 
To handle uncertain probability distributions, stochastic 
dominance and empirical likelihood frameworks have 
been developed to deal with decision-making (Post et al., 
2018). Liesiö et al. (2020) also build on this argument by 
suggesting portfolio diversification methods when the 
probability information is incomplete, since market 
dynamics are not necessarily entirely quantifiable or 
predictable. Equally, the use of robust optimization has 
gained popularity due to its capacity to provide stable 
results in the worst-case scenario. Bertsimas et al. (2018) 
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developed robust data-driven models based on the 
learning of past data combined with worst-case reasoning 
to construct portfolios that can be sustained under model 
ambiguity. 
Nevertheless, as the attractiveness of robust and stochastic 
optimization is on the rise, most of the formulations are 
not easily analyzed mathematically. Indicatively, Caccioli 
et al. (2018) emphasized that optimization of portfolios in 
the context of expected shortfall is quite challenging, and 
the error in estimation may result in the creation of a 
highly unstable model. Georgantas et al. (2024) also 
compared the robust optimization techniques and found 
discrepancies in performance and traceability between 
the techniques. An integrated framework is yet to be 
achieved, particularly when incorporating robust and 
stochastic models in one consistent mathematical view. 
Diversification logic is also another issue. Hwang et al. 
(2018) compared naive and optimized diversification 
strategies, highlighting the concealed tail risks of naive 
allocation strategies. In the meantime, Kim et al. (2018) 
showed the superiority of well-designed equity portfolio 
designs over classical methods through the consideration 
of both estimation risk and returns variance. The 
developments demonstrate an increasing realization of 
the nonlinear risk structures that its traditional 
approaches might not be able to quantify. 
Regardless of these improvements, a lot of the models 
suggested over the past few years continue to be poorly 
developed. Because robust portfolio optimization does 
not have a consistent taxonomy in mathematics, as it was 
observed in the categorized review by Xidonas et al. 
(2020), there is no easy way to compare the methods 
applied to solve a problem of one type with another. Also, 
existing research typically optimizes within a given 
paradigm, either stochastic, robust, or heuristic, but does 
not provide a synthesis or cross-paradigm comparison of 
the models. This constrains generalizability as well as 
theoretical insight. 
Given these concerns, a coherent mathematical approach 
to optimization methods in portfolio management that 
combines different models, evaluates their theoretical 
assumptions, and provides a standardized framework in 
which the quality and feasibility of solutions can be 
measured is urgently required. This kind of treatment 
would not only make the portfolio theory more scientific 
but would also inform the creation of more resilient 
financial strategies. 
 
Objectives 
1. To present a mathematically integrated and 

comparative framework of optimization techniques 
used in financial portfolio management, including 
convex, stochastic, and robust models. 

2. To explore the theoretical underpinnings of these 
models by deriving existence, uniqueness, and 
stability conditions for optimal portfolio solutions. 
 

2. Mathematical Formulation of Portfolio Optimization 
2.1 Model Assumptions 

Let there be a finite set of 𝑛 financial assets, indexed by 
𝑖 = 1,2, … , 𝑛. Each asset has an associated random 
return. 𝑟𝑖, and the investor selects portfolio weights 𝑤𝑖 , 
representing the proportion of total capital invested in 
the asset 𝒊. The primary objective of portfolio 
optimization is to determine the optimal weight vector. 
𝐰 = (𝑤1 , 𝑤2, … , 𝑤𝑛) that maximizes expected return 
while minimizing risk. 
The following standard assumptions are considered: 
• Non-negativity constraint: 𝑤𝑖 ≥ 0 for all 𝑖, assuming 

no short-selling. 
• Budget constraint: ∑  𝑛

𝑖=1 𝑤𝑖 = 1, ensuring full capital 
allocation. 

• Return model: Returns 𝑟𝑖 are modeled as either 
random variables (stochastic models) or values within 
uncertainty sets (robust models). 

• Risk measures: May include variance, value-at-risk 
(VaR), conditional value-at-risk (CVaR), or sparsity 
penalties for parsimony. 

As Zhao et al. (2023) note, modern portfolio design 
increasingly incorporates constraints that promote 
sparsity and account for estimation errors under 
uncertainty. These considerations shape the formal 
optimization problem's structure and solution approach. 
 
2.2 General Optimization Problem 
A general portfolio optimization problem is defined as 
follows: 

min
𝐰

 𝐹(𝐰) = 𝜙(Risk(𝐰), Return(𝐰)) 

Subject to: 
• ∑𝑖=1

𝑛  𝑤𝑖 = 1 
• 𝑤𝑖 ≥ 0, ∀𝑖 

The function 𝜙(⋅)represents a decision-maker's 
preference over the trade-off between risk and return. In 
a multi-objective context, this may be treated as a 
scalarization of competing objectives. As noted by Takano 
and Gotoh (2023), a unified framework for treating these 
formulations mathematically allows analysts to interpret 
classic and modern approaches within a common 
optimization landscape. 
 
2.3 Specific Optimization Frameworks 
Convex Optimization 
In cases where the objective as well as the feasible region 
is convex, the portfolio optimization problem guarantees 
global optimality. Convex formulations allow easily 
analyzed analysis, especially when risk is modeled as a 
quadratic or piecewise-linear. Bertsimas and Cory-Wright 
(2022) stress the importance of convex and sparse 
formulations to obtain the scalable models of portfolios 
that can be computed even when the asset universe is very 
large. 
Quadratic Programming 
The classical Markowitz model is typically expressed as a 
quadratic programming (QP) problem: 

min
𝐰

  𝐰𝑇Σ𝐰 − 𝜆𝐰𝑇𝜇 

where 𝚺 is the covariance matrix of asset returns, 𝝁 is the 
vector of expected returns, and 𝝀 is the risk aversion 
parameter. The structure of this formulation ensures 
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convexity, but sensitivity to parameter estimation limits 
practical robustness. 
Stochastic Optimization 
Stochastic models are returns that are considered random 
variables with known or partially known distributions. 
The goal usually tends to reduce the anticipated loss or 
maximize the anticipated utility subject to probabilistic 
restrictions. In their study, La Torre et al. (2024) suggest 
a stochastic optimization method in which the 
incomplete information and partial uncertainty are 
integrated into the modeling framework that covers the 
gaps that remain open by deterministic models. 
Robust Optimization 
Robust models are concerned with worst-case scenarios by 
defining uncertainty sets of return vectors or risk 
parameters. The optimization is turned into a minimax 
problem, which can be reformulated with the help of 
duality methods. The study by Zhao et al. (2023) 
demonstrates that adding both sparsity and robustness 
results in both interpretable and model misspecification 
resilient portfolio solutions. 
Multi-objective Optimization 
This framework fills in the trade-offs by maximizing a 
number of goals at the same time, namely maximizing the 
returns and minimizing the variance and transaction 
costs. Takano and Gotoh (2023) emphasize that convexity 
allows building Pareto-efficient frontiers, which provides 

the decision-maker with a list of non-dominated solutions 
to make a selection.. 
 
2.4 Analytical Comparison 
Both of the formulations have their own mathematical 
strengths and weaknesses: 
• Convex and QP models: The global optima and 

quick convergence are ensured; however, the 
estimation of parameters needs to be precise. 

• Stochastic models: Stochastic models admit the 
treatment of uncertainty probabilistically, but they 
can be computationally heavy when the distribution 
is complex (La Torre et al., 2024). 

• Robust optimization: Performance guarantees are 
used in cases of worst-case scenarios but can be either 
conservative or large (Jiang et al., 2023). 

• Multi-objective models: These are more detailed 
decision frames, but make the interpretation of 
solutions and selection criteria more difficult. 

In Table 1, a comparative summary of five significant 
optimization frameworks applied in portfolio theory is 
presented. It describes the type of objective, the structure 
of constraints, and the overall solvability of each of the 
models, and points out the mathematical variety in 
current methods of building a modern portfolio. 

 
Table 1. Comparative Summary of Mathematical Optimization Frameworks in Portfolio Management 

Framework Objective Type Constraints Solvability 
Convex Optimization Convex Linear/Convex Global optimum 
Quadratic Programming Quadratic Linear equality/inequality Polynomial time 
Stochastic Optimization Expectation-based Probabilistic Scenario-based 
Robust Optimization Minimax Uncertainty set-based Dual reformulable 
Multi-objective Vector-valued Convex/Linear Pareto solutions 

 
Jiang et al. (2023) further demonstrate that robust models 
incorporating temporal constraints, such as bankruptcy 
avoidance, require custom constraint design but are 
amenable to tractable solution methods under specific 
assumptions. 
 
3. Theoretical Analysis and Propositions 
3.1 Theoretical Results 
To establish the mathematical foundations of the 
proposed portfolio optimization frameworks, key 
theoretical properties in terms of existence, uniqueness, 
duality, and sensitivity were analyzed. 
Existence of Optimal Solution 
Let 𝒲 ⊆ ℝ𝑛 Be the feasible set of portfolio weights, 
defined as: 

𝒲 = {w ∈ ℝ𝑛 ∣ ∑  

𝑛

𝑖=1

 𝑤𝑖 = 1, 𝑤𝑖 ≥ 0}. 

Assuming that the objective function 𝐹(𝐰) is continuous 
and 𝒲 Is convex and compact, and Weierstrass' Theorem 
guarantees the existence of an optimal solution. 
Uniqueness Under Convexity 

If 𝐹(𝐰) is strictly convex, then the optimal solution 𝐰∗ ∈
𝒲 is unique. This is especially applicable in the quadratic 
mean-variance framework, where the risk function 
involves a positive definite covariance matrix. Σ, ensuring 
strict convexity of the objective. 
Duality and KKT Conditions 
For convex problems with differentiable objectives and 
convex constraints, the Karush-Kuhn-Tucker (KKT) 
conditions characterize optimality. Let ℒ(𝐰, 𝜆, 𝜇) be the 
Lagrangian for the constrained optimization problem. 
The optimal solution satisfies: 
• Stationarity: ∇𝐹(𝐰∗) + 𝜆𝟏 − 𝜇 = 𝟎 
• Primal feasibility: ∑  𝑤𝑖 = 1, 𝑤𝑖 ≥ 0 
• Dual feasibility: 𝜇𝑖 ≥ 0 
• Complementary slackness: 𝜇𝑖𝑤𝑖 = 0 
These conditions form the basis for dual reformulations 
and efficient numerical solvers. 
Sensitivity Analysis 
Let Δ𝜇 and ΔΣ denote small perturbations in expected 
returns and covariances, respectively. The change in 
optimal weights Δ𝐰∗ can be bounded using first-order 
Taylor approximations: 

Δ𝐰∗ ≈ −𝐻−1∇𝐹′(𝐰∗)Δ𝜃, 
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where 𝐻 is the Hessian matrix and Δ𝜃 represents 
parameter variation. This analysis is crucial for 
understanding how robust or fragile a portfolio solution 
is under model uncertainty. 
 
3.2 Proofs and Mathematical Derivations 
Here, a sketch of the uniqueness result for convex 
optimization was illustrated.  
Proposition. 
Let 𝐹(𝐰) be strictly convex and 𝒲 convex and compact. 
Then the solution 𝐰∗ ∈ 𝒲 that minimizes 𝐹(𝐰) is 
unique. 

Proof Sketch. 
Assume two distinct minima. 𝐰1 ≠ 𝐰2 ∈ 𝒲. Since 𝐹 is 
strictly convex: 

𝐹(𝛼𝐰1 + (1 − 𝛼)𝐰2) < 𝛼𝐹(𝐰1) + (1 − 𝛼)𝐹(𝐰2) 
for 𝛼 ∈ (0,1), contradicting minimality. Thus, the 
solution must be unique. 
Figure 1 below graphically demonstrates this with a 
strictly convex risk function over the feasible region, 
showing how the minimum is achieved uniquely. 

 
Figure 1. Visualization of Convex Objective with Unique Optimal Solution 

 
The figure illustrates a strictly convex function over a 
simplex of feasible weights, showing a clear, unique 
minimum. 
 
3.3 Comparative Insights 
The various optimization structures represent various 
assumptions regarding risk, uncertainty and investor 
behavior. For instance: 
• Convex and quadratic models make the assumption 

that the distributions of returns are fully known and 
prefer analytical simplicity. 

• Stochastic models involve all randomness explicitly 
and enable the possibility of making decisions based 
on expectation making, but can be computationally 
intensive. 

• Strong optimization methods do not depend on the 
accurate estimation of the probability but the worst-

case performance, which is appropriate in the high 
volatility markets. 

• Multi-objective optimization is based on the reality of 
trade-offs between competing objectives such as 
maximum return and minimum risk or turnover. 

The methods also differ in the modeling of the 
preferences of investors, especially the risk aversion. The 
aversion is coded in convex utility-based models with a 
scalar risk-return trade-off parameter, and robust methods 
are effective in encoding aversion to uncertainty using a 
set of uncertainty. 
The summary of the results of the study of the main 
mathematical behaviors and sensitivities of the various 
frameworks to different input perturbations is 
summarized in Table 2 below. 
 

 
Table 2. Theoretical Properties of Portfolio Optimization Frameworks under Uncertainty 

Optimization Model Handles Uncertainty Risk Aversion Mechanism Solution Stability 
Convex Optimization No Scalar trade-off High (if convex) 
Quadratic Programming Limited (estimates) Fixed covariance structure Medium 
Stochastic Optimization Probabilistic Expected utility Scenario-sensitive 
Robust Optimization Worst-case sets Set construction parameters High 
Multi-objective Trade-offs modeled Pareto frontier preference Moderate 
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Table 2 helps clarify the mathematical flexibility and 
limitations of each method when applied to real-world 
financial data under uncertainty. 
 
4. Illustrative Example 
In order to illustrate the mathematical nature of the 
methods of portfolio optimization in a simplified 
scenario, a synthetic example with three assets was made. 
This situation enables us to analytically observe how the 
risk aversion changes will influence the optimal portfolio 
weights in a mean-variance framework 
4.1 Dataset Description 
Assume the following synthetic parameters: 
• Expected returns: Asset 1 = 8%, Asset 2 = 10%, Asset 

3 = 12% 

• Covariance matrix: 

Σ = [
0.005 −0.010 0.004

−0.010 0.040 −0.002
0.004 −0.002 0.023

] 

• Risk aversion parameter 𝜆 ∈ {1,5,10} 
The objective is to compute the optimal weights. 𝐰 that 
minimize the risk-return trade-off: 

min
𝐰

  𝐰⊤Σ𝐰 − 𝜆 ⋅ 𝐰⊤𝜇 

subject to ∑  𝑤𝑖 = 1 and 𝑤𝑖 ≥ 0. 
4.2 Optimization and Results 
The optimization is solved symbolically by computing the 
inverse of the covariance matrix and adjusting weights 
based on the chosen. 𝜆value. The resulting weights for 
each asset are summarized in Table 3 below. 

 
Table 3. Optimal Portfolio Weights Under Varying Risk Aversion Parameters 

λ (Risk Aversion) Asset 1 Asset 2 Asset 3 
1 0.2538 0.3766 0.3696 
5 0.2755 0.3871 0.3374 
10 0.2853 0.3921 0.3226 

 
As shown, Asset 3 (with the highest expected return) 
receives greater weight under low risk aversion, while 
more conservative allocations (higher 𝜆) favor less volatile 
assets. 
 
4.3 Risk-Aversion Sensitivity 
The visualization of the change in portfolio weights with 
the risk aversion parameter λ is presented in Figure 2 

below. One of them becomes obvious: the greater the λ 
value, the more diverse and risk-averse the allocation. 
This substantiates the theoretical hypothesis according to 
which an increased risk sensitivity leads to more 
equilibrium portfolios, even in a simplified three-asset 
setting. 

 

 
Figure 2. Effect of Risk Aversion (λ) on Portfolio Weights 

 
5. Discussion 
The above theoretical discussion has revealed that 
mathematical models of portfolio optimization provide a 
potent framework of the capture and response to 
financial risk. The key to this strength lies in how various 
formulations such as the convex formulation, the 
stochastic formulation, the robust formulation and the 
multi-objective formulation, have been able to capture 

subtle investor behavior and market uncertainty in a 
structured, solvable form. The models allow more 
rational and justifiable financial decisions to be made by 
actively including constraints, risk aversion, and 
uncertainty sets. 
One of the key lessons of the study is the role of 
mathematical generalizations to create a channel towards 
enhancing both robustness and realism of portfolio 
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construction. As an example, strong models enable 
investors to hedge worst-case scenarios and model 
uncertainty by including distributional or parametric 
uncertainty in the formulation of the optimization. This 
elasticity applies especially in international markets where 
political and macroeconomic instability plays a major role 
in determining the returns of the assets. Based on the 
findings of Lotfi et al. (2025), hedging political risk in 
strong portfolio frameworks makes it possible to deploy 
plausible allocation plans even against a backdrop of 
systemic instability. 
Under extreme market conditions, common measures of 
risk like variance may not be an accurate measure of 
downside exposure. This problem has led to the creation 
of more sophisticated loss functions and distributional 
models which are more tail risk-sensitive. Le Courtois and 
Xu (2024) also share this opinion and suggest a Pareto-
Dirichlet modeling methodology that allows highlighting 
the sensitivity of extreme events in the process of 
developing effective portfolios. Similarly, Sehgal et al. 
(2023) assess risk in terms of the Omega-VaR ratio, which 
expands theoretical understanding of the optimization of 
portfolios in situations that are highly negative, yet 
reasonable. 
Multi-objective models also become a powerful tool to 
model conflicting objectives of the investors, e.g. 
maximizing the return and a minimum of drawdown, 
turnover or other secondary measures. These models do 
not consider a single optimal solution, but a Pareto 
frontier of equally efficient solutions. Zhou-Kangas and 
Miettinen (2019) explain that it is possible to maintain 
the quality of decisions in a state of uncertainty by 
maneuvering this frontier. Moreover, Petchrompo et al. 
(2022) mention the issue of pruning to decrease the 
complexity of the solution in high-dimensional multi-
objective portfolios, thereby enhancing more 
interpretable and computationally viable decision-
making. 
The results of our exemplary case confirm the sensitivity 
of the mathematical model of optimization in response to 
the variations in investors' preferences, especially the risk 
aversion coefficient λ. This was counterintuitive to the 
intuitive behavior of conservative investors in the real 
world in that as the risk aversion increased, the 
concentration of the portfolio decreased, as shown in the 
visualization. This is consistent with Taylor (2022) 
dynamic modeling of risk-adjusted returns based on 
expected shortfall, where minor changes in investor 
parameters produce significant changes in asset 
weightings. 
Structurally, strong models can also be dynamically 
adjusted according to the changes or economic signs. This 
development is captured by the concept of adjustable 
robustness, which, as surveyed by Yanıkoğ lu et al. (2019), 
can be described as models that previously dealt with 
uncertainty as fixed, but now can flex to disclosed 
information or a change in the scenario. This will form a 
gap between theoretical optimization and adaptive 

portfolio strategies, which may allow real-time adjustment 
of assets using mathematically reasonable concepts. 
Theoretical progress should keep on filling the gaps of the 
underlying assumptions of linearity and stationarity in 
portfolio models. As Waga et al. (2025) demonstrate, a 
robust optimization model can be used to incorporate 
more realistic and empirically appropriate asset pricing 
mechanisms into the Arbitrage Pricing Theory. This is the 
direction that is clearly fruitful in intersections between 
financial theory and operational mathematics, with 
prospects to enhance the empirical realism and 
algorithmic flexibility of portfolio solutions. 
6. Conclusion 
This research paper offered a coherent mathematical view 
of the methods of optimization in financial portfolio 
management with a focus on the theoretical basis and 
analytical characteristics of different frameworks. 
Through a systematic analysis of the convex, stochastic, 
robust and multi-objective models, the manner in which 
each of the models represents different aspects of investor 
behaviour and market uncertainty under a rigorous 
optimization framework was brought to light. One of the 
greatest contributions of the work is the comparative 
analysis of the solvability of the models, sensitivity, and 
robustness under different assumptions. Convex models 
were demonstrated to be used to ensure unique solutions, 
provide analytical clarity, and be computationally 
efficient. Stochastic models enabled probabilistic risk 
related to uncertainty in returns, and strong models 
offered protection against model misspecification and 
estimation error. Multi-objective optimization extended 
the theoretical frontier of identifying trade-offs, providing 
Pareto-efficient results that are useful in complex 
investment objectives. These models were supported 
mathematically by the proofs of existence and uniqueness 
under convexity and first-order sensitivity 
approximations, as well as by theoretical results. We also, 
using an illustrative example, have shown how the 
variation in the risk aversion parameter can change 
optimal asset weights by a significant amount to give a 
clear connection between mathematical behavior and 
financial meaning. This article can be added to the body 
of theoretical literature due to the ability to not only 
provide a synthesis of various optimization strategies but 
also to provide a systematized platform for assessing their 
assumptions and limitations. In contrast to empirical 
research based largely on historical data, we are concerned 
about the generalizability and analysis rigor of the models 
themselves. In the future, much can be done to combine 
these optimization tools with AI-based systems that can 
learn and evolve on the fly. It would be interesting to add 
to the discussed frameworks with dynamic models that 
continuously change portfolios as incoming information 
is received, and empirical backtesting in various market 
regimes. The following directions can be used to fill in the 
disparity between the theoretical soundness and practical 
implementation of the portfolio. 
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